Vineomycin ${ }^{\circledR}$

1. Discovery, producing organism and structures ${ }^{1-3)}$

While screening for new antibiotics in actinomycetes, vineomycins A_{1}, A_{2}, B_{1} and B_{2} were isolated from the culture broth of Streptomyces matensis strain OS-4742 ${ }^{\mathrm{T}}$. These compounds are active against Gram-positive bacteria and the Sarcoma 180 solid tumor in mice. Vineomycin A_{1} ($\mathrm{P}-1894 \mathrm{~B}$) also possesses potent inhibitory activity against collagen prolyl hydroxylase. The synthesis of vineomycin B_{2} analog has been reported by several groups. The first total synthesis of vineomycin B_{2} was reported by Toshima et al. ${ }^{4}$ (See Appendix-I).

Streptomyces matensis subsp. vineus OS-4742 ${ }^{\text {T }}$

2. Physical data (Vineomycin $\left.B_{2}\right)^{1-3)}$

Yellow powder. $\mathrm{C}_{49} \mathrm{H}_{58} \mathrm{O}_{18}$; mol wt 934.36. Sol. in MeOH.
3. Biological activity ${ }^{1)}$

1) Antimicrobial activity

	MIC $(\mu \mathrm{g} / \mathrm{ml})^{*}$				
Test organism	A1	A2	B1	B2	
Staphylococcus aureus FDA209P	0.8	12.5	1.6	1.6	
Bacillus subtilis PCI219	3.1	12.5	6.3	12.5	
B. cereus T	12.5	50	6.3	25	
Micrococcus luteus PCI1001	0.8	12.5	12.5	50	
Escherichia coli NIHJ	>100	>100	>100	>100	
Pseudomonas aeruginosa P-3	>100	>100	>100	>100	
Candida albicans	>100		>100	>100	
Aspergillus niger	>100		>100	>100	

[^0]2) Antitumor activity

When vineomycin $\mathrm{A}_{1}(50 \mathrm{mg} / \mathrm{kg})$ was administered i.p. once a day after transplantation of sarcoma 180 cells, the tumor size (T/C) on 7th day was 0.13 .

4. Biosynthesis ${ }^{5}$

The labeling experiments with both $\left[1-{ }^{13} \mathrm{C}\right]$ - and $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ sodium acetate followed by ${ }^{13} \mathrm{C}$-NMR spectroscopy revealed that the benz[a]anthraquinone chromophore of A_{1} originated from a decaketide metabolite by decarboxylation of the carboxyl end and that of B_{2} was formed via $\mathrm{C}-\mathrm{C}$ bond cleavage of A_{1}.

5. Vineomycin \mathbf{A}_{1} is commercially available as a biochemical reagent.

6. References

1. [138] S. Ōmura et al., J. Antibiot. 30, 908-916 (1977)
2. [210] N. Imamura et al., Chem. Pharm. Bull. 29, 1788-1790 (1981)
3. [220] N. Imamura et al., J. Antibiot. 34, 1517-1518 (1981)
4. S. Kusumi et al., J. Am. Chem. Soc. 135, 15909-15912 (2013)
5. [239] N. Imamura et al., J. Antibiot. 35, 602-608 (1982)

[^0]: *Nutrient agar for bacteria ($37^{\circ} \mathrm{C}, 1$ day) and potato-glucose agar for fungi ($27^{\circ} \mathrm{C}, 2$ days).

