Terpendole

1. Discovery, producing organism and structures $^{1\cdot6)}$

Terpendoles were isolated from the culture broth of the fungal strain FO-2546 and found to be inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). The taxonomic study of the producing organism led us to establish a new genus of *Albophoma yamanashiensis*^{1, 2)}. [See "*Albophoma yamanashiensis*" (p. 386)].

Terpendoles have a common indoloditerpene moiety. Structurally related known compounds, paspaline³⁾ and emindole SB⁴⁾, were also produced and isolated from the same strain. The relative stereostructures were determined by NOE experiments and X-ray crystallographic analysis of terpendoles D and $E^{5,6)}$.

2. Physical data (Terpendole A)³⁾

White powder. $C_{32}H_{41}NO_6$; mol wt 535.29. Sol. in MeOH, EtOAc, CHCl₃, DMSO. Insol. in H₂O, hexane.

3. Biological activity^{2,6-8)}

1) Enzyme assay for ACAT inhibition

ACAT inhibitory activity [See also "Purpactin" (p. 279)] was tested in an enzyme assay using rat liver microsomes. An additional prenyl residue at the diterpene moiety is responsible for potent ACAT inhibiton.

2) Cell assay²⁾

ACAT inhibitory activity was evaluated in a cell assay using J774 macrophages. Cytotoxicity (CD_{50}) was also determined to evaluate the specificity. Among the terpendoles tested, terpendole D was the most potent ACAT inhibitor (IC₅₀) and had the highest specificity.

Compound	J774 (µM)		Spacificity
	IC ₅₀	CD ₅₀	(CD_{50} / IC_{50})
Terpendole A	0.29	> 23.4	> 81
B	1.80 0.46	> 29.7 > 24.1	>17 > 52
D	0.048	> 24.8	> 520
Paspaline Emindole SB	2.85 6.48	29.0 16.0	10 2.5

3) Tremorgenic activity of terpendole C^{7}

Some indoloditerpenes were reported to be tremorgens. Terpendole C was found to have tremorgenic activity in mice. It was faster acting and produced more intense tremors than the same dose of paxilline⁸⁾. It is still unclear as to whether or not other terpendoles show tremorgenic activity.

4) Inhibition of motor activation of mitotic kinesin Eg 5 by terpendole E^{99}

Terpendole E was recognized as a specific M phase inhibitor. The compound inhibited both motor and microtubule-stimulated human Eg 5 ATPase activity.

4. Biosynthesis¹⁰⁾

The biosynthetic gene cluster for terpendol was identified and the biosynthetic pathway was proposed by Motoyama *et al*.

5. References

- 1. [568] T. Kobayashi et al., Mycoscience 35, 399-401 (1994)
- 2. [561] X.-H. Huang et al., J. Antibiot. 48, 1-4 (1995)
- 3. K. Nozawa *et al.*, In "The 29th Symposium on Chemistry of Natural Products" pp.637-643 (1987)
- 4. J. P. Springer *et al.*, *Tetrahedron Lett.* **21**, 231-234 (1980)
- 5. [562] X.-H. Huang et al., J. Antibiot. 48, 5-11 (1995)
- 6. [586] H. Tomoda et al., J. Antibiot. 48, 793-804 (1995)
- 7. [659] S. C. Munday-Finch et al., J. Agricult. Food Chem. 45, 199-204 (1997)
- 8. R. J. Cole *et al.*, *Can. J. Microbiol.* **20**, 1159-1162 (1974)
- 9. J. Nakazawa et al., Chem. Biol. 10, 131-137 (2003)
- 10. T. Motoyama *et al.*, *Chem. Biol.* **19**, 1611-1619 (2012)