
Rugulosin

1. Discovery, producing organism and structure $^{1)}$

Rugulosins B and C were isolated from a culture broth of *Penicillium radicum* (current name: *Talaromyces radicus*) FKI-3765-2 and proved to be anti-MRSA agents. FKI-3765-2 is also a producer of xanthoradones. Rugulosins B and C are analogs of rugulosin A (renamed from rugulosin) having anthraquinone dimers.

Penicillium radicum FKI-3765-2 (Talaromyces radicus FKI-3765-2) Bar: 10 µm

R ₂ O	OH OH OH OH	OH R ₁	
	R_1	\mathbf{R}_{2}	_
Rugulosin A	-CH ₃	-CH ₃	
Dugulasin D	011		
Rugulosin B	-CH₃	-CH ₂ OH	

2. Physical data (Rugulosin B)

Yellow crystal. C₃₀H₂₂O₁₁; mol wt 558.49. Sol. in DMSO.

3. Biological activity¹⁾

1) Anti-MRSA activity

Rugulosin A showed potent anti-MRSA activity with a MIC value of 0.125 μ g/mL, while rugulosins B and C showed weak activity with MIC values of 32 and 64 μ g/mL, respectively.

2) Cytotoxicity

No cytotoxicity against Jurkat cells were observed even at $60-100 \mu g/mL$ of rugulosins.

4. References

1. [1082] H. Yamazaki et al., Org. Lett. 12, 1572-1575 (2010)