Phthoxazolin

1. Discovery, producing organisms and structures¹⁻⁷⁾

Phthoxazolin A was isolated from the culture broth of the actinomycete strain OM-5714 while screening for cellulose biosynthesis inhibitors. Phthoxazolins B, C, and D were isolated from the culture broth of the actinomycete strain KO-7888 while screening for triene compounds. In-thomycin A and CL22T were later reported to have the same structure as phthoxazolin $A^{6,7}$. The total synthesis of phthoxazolin was reported by Whiting *et al.*⁸ (See Appendix-I).

2. Physical data (Phthoxazolin A)

Pale yellow powder. $C_{16}H_{22}N_2O_3$; mol wt 290.37. Sol. in DMSO, MeOH, CHCl₃. Insol. in H₂O, hexane.

3. Biological activity^{1,2,9,10)}

1) Phthoxazolins are active against a strain of phytopathogenic fungi, *Phytophthora* sp., but are inactive against other bacteria and fungi tested. Phthoxazolin A is a potent herbicide, and inhibits cellulose synthesis in cell-free and resting cell systems.^{1,2)}

	Amount	Anti- <i>Phytophthora</i> activity	Growth inhibition	Inhibition (%) of cellulose bio- synthesis in <i>Acetobacter xylinum</i>	
Compound	μg/ml (mM)	* (inhibition zone, mm)	of radish seedlings (%)	Resting cell system	Cell-free system
Phthoxazolin A	100 (0.34) 10 (0.03)	31 11	100 30	47 30	69 27

Cellulose synthase inhibition and herbicidal activity of phthoxazolin A

* to be read as μ g per tube for herbicidal activity

Phthoxazolin A inhibited prostate cancer growth.

4. Production by phosphate ion-depressed fermentation²⁾

Phthoxazolin A is produced under phosphate ion-depressed fermentation conditions. [Refer to "Development of ammonium ion- and phosphate ion-depressed fermentations" (p. 413)].

	Phthoxazolin A (µg/ml)		
Production medium	None	+ Allophane (0.5%)	
А	<5	95	
В	<5	79	
С	<5	90	

Phthoxazolin A production in media with and without added allophane

Medium A:	Soluble starch 2.0%, glycerol 0.5%, wheat germ 1.0%, meat
(extract 0.3%, dry yeast 0.3%, and CaCO ₃ 0.3%; pH 7.5.
Medium B: 1	Lactose 1.0%, glycerol 0.5%, pectin 0.5%, NZ-amine 0.5%,
	dry yeast 1.0%, and CaCO ₃ 0.3%; pH 6.7.
Medium C:	Starch 2.4%, glucose 0.1%, peptone 0.3%, meat extract
(0.3%, yeast extract $0.5%$, CaCO ₃ $0.4%$, and trace salt
:	solution 0.5% (v/v); pH 7.0. The trace salt solution contains
	(each at 1 g/L): $FeSO_4$ ·7H ₂ O, MnCl ₂ ·4H ₂ O, ZnSO ₄ ·7H ₂ O,
($CuSO_4 \cdot 5H_2O$, and $CoCl_2 \cdot 6H_2O$; pH 6.7.

5. References

- 1. [445] S. Ōmura et al., J. Antibiot. 43, 1034-1036 (1990)
- 2. [511] Y. Tanaka *et al.*, *J. Antibiot.* **46**, 1208-1213 (1993)
- 3. [512] Y. Tanaka et al., J. Antibiot. 46, 1214-1218 (1993)
- 4. [581] K. Shiomi et al., J. Antibiot. 48, 714-719 (1995)
- 5. [582] Y. Tanaka et al., J. Antibiot. 48, 720-724 (1995)
- 6. T. Henkel and A. Zeeck, *Liebigs Ann. Chem.* **1991**, 367-373 (1991)
- 7. F. Legendre *et al.*, *J. Antibiot.* **48**, 341-343 (1995)
- 8. N. Hénaff *et al.*, *Tetrahedron* **56**, 5193-5204 (2000)
- 9. M. Kawada et al., Anticancer Res. 23, 1561-1568 (2004)
- 10. M. Kawada et al., Cancer Sci. 100, 150-157 (2009)