Nafuredin

1. Discovery, producing organism and structure¹⁻⁷⁾

Nafuredin was isolated from the culture broth of *Aspergillus niger* strain FT-0554 and recognized as an inhibitor of helminth NADH-fumarate reductase. Its target was revealed to be complex I (NADH-quinone oxidoreductase), and it was identified as a selective inhibitor of helminth complex I. Nafuredin showed anthelmintic activity against *Haemonchus contortus* in *in vivo* studies. The structure of nafuredin was elucidated as β , γ -epoxy- δ -lactone with a branched side chain, and its absolute configuration was revealed synthetically.

Conidiophore and conidiogenous cells Bar: 20 µm

Conidia Bar: 2 µm Aspergillus niger FT-0554

HO^N, CH₃ CH₃

2. Physical data

White powder. $C_{22}H_{32}O_4$; mol wt 360.50. Sol. in DMSO, EtOH, EtOAc, CHCl₃. Insol. in H₂O, hexane.

3. Biological activity^{1,4)}

1) Effects on electron transport enzymes

		IC ₅₀ (nM)			
Сс	mplex	Ascaris suum (adult)	Ascaris suum (L2)	Haemonchus contortus (adult)	Rat liver
NADH-fumarate reductase NADH-ubiquinone reductase NADH-rhodoquinone reductase Rhodoquinol-fumarate reductase Succinate-ubiquinone reductase	I+II I I II II	12 8 24 80,000 >100,000	NT 8.9 9.0 NT NT	NT 86 195 NT NT	1,000 10,000 >100,000 NT >100,000

NT : not tested

Many adult parasites live in low oxygen environments. Such organisms generate ATP differently from aerobic mammals. Anaerobic parasites fix CO_2 to phosphoenolpyruvate producing oxaloacetate, which is converted into malate and transported to the mitochondria. Malate is then converted to fumarate, and reduced to succinate by complex II which uses NADH as a reducing agent. This system, composed of complexes I and II, is called NADH-fumarate reductase. The quinone used in this system is not ubiquinone but rhodoquinone. In a screening of NADH-fumarate reductase inhibitors for new anthelmintics, we found nafuredin and atpenin (See p. 92).

2) Kinetic analysis of naturedin inhibition of *A. suum* complex I The inhibition is noncompetitive with NADH (Ki = 8.1 nM) and competitive with rhodoquinone (Ki = 8.3 nM).

3) Effect on Haemonchus contortus infected sheep

Eggs per gram of feces from *H. contortus* infected sheep on different days before and after oral treatment with 2 mg/kg nafuredin compared to untreated infected sheep are shown. Values are the mean of two trials (control) or three trials (treated animals) \pm S.D.

4) Toxicity

There were no signs of side effects or reduction of body weight during the testing period in either sheep (2 mg/kg p.o.) or mice (50 mg/kg p.o. and i.p.).

5) Antimicrobial activity	$(10 \mu\text{g}/6 \text{mm dis})$	c, paper disc method)
---------------------------	------------------------------------	-----------------------

Test organism	Inhibitory zone (mm)	Test organism	Inhibitory zone (mm)
Bacillus subtilis ATCC6633 Staphylococcus aureus ATCC6538p Micrococcus luteus ATCC9341 Mycobacterium smegmatis ATCC607 Escherichia coli NIHJ Pseudomonas aeruginosa IFO3080 Xanthomonas campestris pv. oryzae KE	 388	Bacteroides fragilis ATCC2374 Acholeplasma laidlawii PG8 Pyricularia oryzae KF180 Candida albicans KF1 Saccharomyces cerevisiae KF2 Aspergillus niger ATCC6275 Mucor racemosus IFO4581	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

4. Biosynthesis²⁾

Nafuredin is biosynthesized from a nonaketide and four methionines (branched methyl carbons).

5. Nafuredin- $\gamma^{8)}$

Nafuredin is easily converted to a compound named nafuredin- γ by weak alkaline treatment. The structure of nafuredin- γ was elucidated as a γ -lactone form of nafuredin with keto-enol tautomerism. Nafuredin- γ shows similar complex I inhibitory activity as nafuredin, and it also possesses anthelmintic activity *in vivo*.

6. Total synthesis^{9,10)} (See Appendix-I) 1) Total synthesis of naturedin

Chapter 2

7. Close structural relatives¹¹⁾

Analyses of type I polyketide synthase gene clusters of *Streptomyces aculeolatus* NRRL 18422 and *Streptomyces* sp. Eco86 predicted three 5-alkenyl-3-furanones, one (E-837) from the former and two (E-492, E-975) from the latter strain. They were isolated and their inhibitory activity against NADH-fumarate reductase were evaluated, because they were structurally similar to na-furedin- γ . However their showed only moderate inhibitory activity (IC₅₀ = 1-4 µg/ml).

8. References

- 1. [768] S. Ōmura et al., Proc. Natl. Acad. Sci. USA 98, 60-62 (2001)
- 2. [772] H. Ui et al., J. Antibiot. 54, 234-238 (2001)
- 3. [776] D. Takano *et al.*, *Tetrahedron Lett.* **42**, 3017-3020 (2001)
- 4. [785] K. Shiomi et al., Bioscience and Industry 59, 37-38 (2001)
- 5. [868] K. Shomi & S. Ōmura, Proc. Jpn. Acad., Ser. B 80, 245-258 (2004)
- 6. [946] K. Kita et al., Trends Parasitol. 23, 223-229 (2007)
- 7. [947] S. Ōmura & K. Shiomi, Pure Appl. Chem. 79, 581-591 (2007)
- 8. [877] K. Shiomi et al., J. Antibiot. 58, 50-55 (2005)
- 9. [787] D. Takano et al., Org. Lett. 3, 2289-2291 (2001)
- 10. [837] T. Nagamitsu et al., Tetrahedron Lett. 44, 6441-6444 (2003)
- 11. [953] A. H. Banskota et al., J. Antibiot. 59, 168-176 (2006)