Kazusamycin [©]

1. Discovery, producing organism and structures $^{1\text{-}5,7,8)}$

Kazusamycins were isolated from the culture broth of the actinomycete strain 81-484 and found to be antitumor compounds. The physico-chemical and biological characteristics of kazusamycins were similar to leptomycins. The first total synthesis of kazusamycin A was achieved by Kuwajima *et al.*¹⁰

	HOOC CH ₃ CH ₃ CH ₃ R	H ₂ CH ₃	CH ₃ O	CH ₃
Z		R ₁	R_2	
Streptomyces sp. 81–484	Kazusamycin A Kazusamycin B Leptomycin A Leptomycin B	$\begin{array}{c} CH_2CH_3\\ CH_3\\ CH_3\\ CH_2CH_3\end{array}$	CH ₂ OH CH ₂ OH CH ₃ CH ₃	

2. Physical data (Kazusamycin A)¹⁾

Pale yellow sticky oil. $C_{33}H_{48}O_7$; mol wt 556.34. Sol. in MeOH, EtOH, EtOAc, acetone, benzene, CHCl₃, Et₂O. Insol. in hexane, H₂O.

3. Biological activity^{1,3,6,7)}

1) Antitumor activity of kazusamycin A on P388 leukemia and sarcoma 180¹⁾

Dees	P	388	Sarco	ma 180
(mg/kg/day x day)	MS	ILS (%)	MSD	ILS (%)
control 0.008 x 5 0.016 x 5 0.031 x 5	12 16 19 NT	0 33 58 NT	12 22 28 20	0 83 133 67

P388 leukemia cells and sarcoma 180 cells were inoculated i.p. into CDF1 mice and ICR mice, respectively. Mice were given i.p. with kazusamycin A on days 1-5. Antitumor activity was evaluated by the increase of life span (ILS); (T/C-1) x 100%, where T was the median survival days (MSD) of the treated group and C was the MSD of the control group. NT; not tested.

2) Cytotoxicity of kazusamycin A¹⁾

Kazusamycin A was effective in completely preventing growth of HeLa cells at a concentration of 3.3 ng/ml.

3) Antimicrobial activity of kazusamycins³⁾

Kazusamycins were active against *Schizosaccharomyces pombe* and *Rhizopus javanicus*, but inactive against Gram-positive bacteria, Gram-negative bacteria, and the following microorganisms: *Saccharomyces cerevisiae*, *Candida albicans*, *Aspergillus fumigatus*, *Rhodotorula rubra* and *Trichophyton mentagrophytes*.

	MIC (μ g/ml)	
Test organism Kazusamysin B		Kazusamysin A
Schizosaccharomyces pombe IAM 4863 Rhizopus javanicus IAM 6241	0.03 0.78	0.05 3.13

4) Cell cycle⁶⁾

Kazusamycin B arrested synchronized L1210 cells in the G1 phase at 4 hours. When the cells were exposed to the drug longer than 12 hours, an unidentified cell population with lower fluorescence intensity than the G1 population was observed.

5) Nuclear export⁷⁻⁹⁾

Kazusamycins and leptomycins were found to be inhibitors of the nucleo-cytoplasmic translocation of the HIV-1 Rev protein at nM concentrations. Leptomycin B has been indicated to inhibit the nuclear export signal (NES)-dependent nuclear export of proteins by CRM1.

4. References

1.		I. Umezawa et al., J. Antibiot. 37, 706-711 (1984)
2.		K. Komiyama et al., J. Antibiot. 38, 220-223 (1985)
3.		K. Funaishi et al., J. Antibiot. 40, 778-785 (1987)
4.		T. Hamamoto <i>et al.</i> , <i>J. Antibiot</i> . 36 , 639-645 (1983)
5.		T. Hamamoto et al., J. Antibiot. 36 , 646-650 (1983)
6.		K. Takamiya et al., J. Antibiot. 41, 1854-1861 (1988)
7.		B. Wolff et al., Chem. Biol. 4, 139-147 (1997)
8.		Y. Wang et al., Helv. Chim. Acta. 80, 2157-2167 (1997)
9.		M. Fukuda et al., Nature 390, 308-311 (1997)
10.	[950]	N. Arai et al., Org. Lett. 6, 2845-2848 (2004)