K97-0239

1. Discovery, producing organism and structures ${ }^{1,2)}$

K97-0239A and B were isolated from the culture broth of the actinomycete strain K97-0239 ${ }^{1,2)}$ and identified as inhibitors of macrophage foam cell formation in a cell-based assay. Their structures were cyclic lipopeptides related to those of enamidonin ${ }^{22}$.

Streptomyces sp. K97-0239

2. Physical data (K97-0239 A) ${ }^{1)}$

White powder. $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{7}$; mol wt 707.40. Sol. in MeOH , EtOH , acetone, $\mathrm{CH}_{3} \mathrm{CN}$, EtOAc, CHCl_{3}. Insol. in $\mathrm{H}_{2} \mathrm{O}$, hexane.

3. Biological activity ${ }^{1)}$

1) Inhibition of lipid droplet formation in mouse peritoneal macrophages.

Inhibitory activity against lipid droplet formation in macrophages (See also "Beauveriolide" (p. 105) was tested in a cell assay using mouse peritoneal macrophage. K97-0239A and B caused a reduction in the number and size of cytosolic lipid droplets in macrophages at $15 \mu \mathrm{M}$ without any cytotoxic effects on the macrophages.

K97-0239
2) Inhibition of neutral lipid synthesis in macrophages.

Inhibitory activity against the syntheses of neutral lipids (cholesteryl ester (CE) and triacylglycerol (TG)) in the cytosolic lipid droplet was tested. $\left[{ }^{14} \mathrm{C}\right] \mathrm{CE}$ synthesis from $\left[{ }^{14} \mathrm{C}\right]$ oleic acid of macrophages was inhibited by K97-0239A and B with IC_{50} values of $1.5 \mu \mathrm{M}$ and $1.7 \mu \mathrm{M}$, respectively. $\left[{ }^{14} \mathrm{C}\right]$ TG synthesis was only moderately inhibited (30~50\%) by the drugs at the highest dose, $15 \mu \mathrm{M}$.

3) Antimicrobial activity ${ }^{1)}$

K97-0239 showed antimicrobial activity against several Gram-positive bacteria such as Bacillus subtilis, Micrococcus luteus and Staphylococcus aureus at a concentration of $10 \mu \mathrm{~g} / \mathrm{disk}$.

4. References

1. [802] I. Namatame et al., Proc. Jap. Acad. 78, 45-50 (2002)
2. S. Koshino et al., J. Antibiot. 48, 185-187 (1995)
