Epohelmin

1. Discovery, producing organism and structures^{1,2)}

Epohelmins A and B were isolated from the culture broth of the fungal strain FKI-0929 as lanosterol synthase inhibitors. The structures were revised as 1α -hydroxy- 3α -(4'-oxoundec-(5'E)-enyl)-pyrrolizidine and 1β -hydroxy- 3α -(4'-oxoundec-(5'E)-enyl)-pyrrolizidine, respectively, by comparison with the spectral data of synthetic compounds³.

2. Physical data (Epohelmin A)

Colorless oil. $C_{18}H_{31}O_2 N$; mol wt 293.44.

3. Biological activity¹⁾

3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is a clinically validated target for suppressing cholesterol biosynthesis. But inhibition of HMG-CoA reductase may cause a simultaneous reduction in the physiologically essential non-sterol isoprenoid metabolites, because it is located upstream in the cholesterol biosynthetic pathway. Therefore, lanosterol synthase (EC 5.4.99.7) is expected to be a more ideal target of inhibition for the development of cholesterol-lowering agents. Epohelmins A and B inhibit recombinant human lanosterol synthase activity with IC₅₀ values of 10 and 6.0 μ M, respectively.

4. References

- 1. [873] Y. Sakano et al., J. Antibiot. 57, 564-568 (2004)
- 2. [894] M. Shibuya et al., J. Antibiot. 58, 599-601 (2005)
- 3. B. B. Snider *et al.*, Org. Lett. 7, 4419-4422 (2005)