
Diolmycin

1. Discovery, producing organism and structures $^{1,2)} \label{eq:coverse}$

Diolmycins were isolated from the culture broth of the actinomycete strain WK-2955 and identified as anticoccidial compounds.

Streptomyces sp. WK-2955

2. Physical data (Diolmycin A1)¹⁾

Colorless powder. C₁₈H₁₉NO₃; mol wt 297.14. Sol. in MeOH, DMSO. Insol. in CHCl₃.

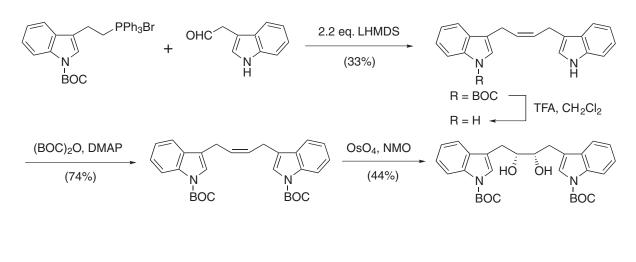
3. Biological activity¹⁾

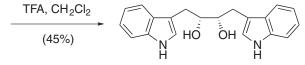
1) Anticoccidial activity

Diolmycins inhibited growth of monensin-resistant *Eimeria tenella* in an *in vitro* assay system using BHK cells as a host.

Compound	Minimum effective concentration (µg/ml)		Specificity
Compound	Anticoccidial activity (A) ^a	Cytotoxicity (C) ^b	Specificity (C/A)
Diolmycin A1	0.02	0.2	10
Diolmycin A2	0.2	2.0	10
Diolmycin B1	20	NT^{c}	_
Diolmycin B2	20	NT^{c}	

^a No mature shizonts were observed in the cells at the indicated drug concentration or higher.

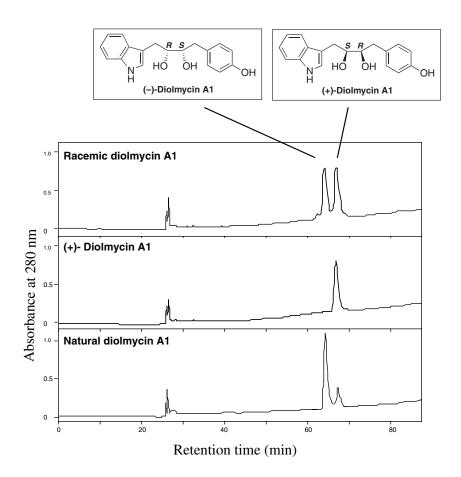

^b No BHK-21 cells were observed at the indicated drug concentration or higher.


° NT : Not tested at a concentration higher than $20 \,\mu$ g/ml.

Chapter 2

4. Synthesis of diolmycin analogs^{2,3)}

Racemic diolmycin A1 and its analogs were synthesized via a stereoselective Wittig reaction followed by osmium oxidation.


Compound	Minimum effective concentration (µg/ml)		Specificity
Compound	Anticoccidal activity (A) ^a	Cytotoxicity (C) ^b	C/A
N H H	0.5	10	20
N N BOC BOC	10	50	5
N HO OH N BOC BOC	c	5.0	_
N HO OH N H	c	0.05	_
	0.5	10	20

^a No mature shizonts were observed in the cells at the indicated drug concentration or higher. ^b No BHK-21 cells were observed at the indicated drug concentration or higher. ^c NT : Not tested at a concentration higher than 20 μ g/ml.

5. Absolute configuration of diolmycin A^{4,5)}

An asymmetric total synthesis of diolmycin A1 was achieved in six steps using 2-(4-hydroxyphenyl) ethanol as a starting material, and established that the absolute configurations of (+)and (-)-diolmycin A1 were (11*S*, 12*R*) and (11*R*, 12*S*), respectively. HPLC analysis using a chiral column revealed the natural diolmycin A1 was comprised of a 4:1 mixture of (-) and (+) enantiomers.

The total synthesis of diolmycin A2 using a Yb(III) trifluoromethanesulfonate-catalyzed high pressure reaction was reported by Kotsuki *et al.*, and showed the absolute configuration of (+)-diolmycin A2 was (11*S*, 12*S*) (See Appendix-I).

6. References

- 1. [501] N. Tabata et al., J. Antibiot. 46, 756-761 (1993)
- 2. [502] N. Tabata et al., J. Antibiot. 46, 762-769 (1993)
- 3. [509] T. Sunazuka et al., J. Antibiot. 46, 1178-1180 (1993)
- 4. [519] T. Sunazuka et al., Tetrahedron Lett. 34, 6659-6660 (1993)
- 5. H. Kotsuki et al., Tetrahedron Lett. **37**, 3727-3730 (1996)