
1. Discovery, producing organism and structures $^{1\mbox{-}3\mbox{-}3\mbox{-}}$

Dinapinone A (a mixture of dinapinone A1 and A2) was discovered in a culture broth of *Penicillium pinophilum* (current name: *Talaromyces pinophilus*) FKI-3864 and shown to be an inhibitor of triacylglycerol synthesis in intact Chinese hamster ovary K1 cells as well as in Raji cells. The two constituent compounds are dimers of a monomer of dihydronaphthopyranone. The monomers, named monapinones A-E were also found as metabolites of same microbe strain³⁾.

Penicillium pinophilum FKI-3864 (Talaromyces pinophilus FKI-3864)

3. Biological activities¹⁾

1) Effect on lipid synthesis in CHO-K1 and Raji cells

Dinapinone A inhibited [¹⁴C]-triacylgycerol (TG) and [¹⁴C]-choresteryl ester (CE) synthesis in a dose-dependent manner in CHO-K1 and Raji cells, with IC₅₀ values of 0.097 and 0.31 μ M, respectively. However, dinapinone A1 showed no effect on [¹⁴C]-triacylgycerol synthesis at 12 μ M. When each the two constituent compounds were tested alone, dinapinone A2 showed less potent inhibitory activity than dinapinone A.

	IC ₅₀ in CHO-K1 cells (μ M)			IC ₅₀ in Raji cells (μ M)	
	CE	TG	PL	TG	PL
Dinapinone A	0.31	0.097	>1.2	0.38	>1.2
Dinapinone A1	>12	>12	>12	>12	>12
Dinapinone A2	5.2	0.65	>12	5.4	>12

CE: choresteryl ester, TG: triacylgrycerol, PL: phospholipid

4. References

- 1. [1094] S. Ohte *et al.*, *J. Antibiot.* **64**, 489-494 (2011)
- 2. R. Uchida et al., J. Antibiot. 65, 419-425 (2012)
- 3. K. Kawamoto *et al.*, J. Antibiot. **64**, 503-508 (2011)