
8', 9'-Dehydroascochlorin

1. Discovery, producing organism and structure¹⁾

8',9'-Dehydroascochlorin was isolated from the culture broth of the fungal strain *Verticillium* sp. FO-2787 and found to be a testosterone 5α -reductase inhibitor.

Bar: 20 μ m

2. Physical data

White plates. $C_{23}H_{27}ClO_4$; mol wt 402.16. Sol. in MeOH.

3. Biological activity¹⁾

 5α -Dihydrotestosterone (DHT) plays a key role in growth and maintenance of the mammalian prostate. Prostate hyperplasia and prostate cancer have been associated with an overproduction of DHT which is converted from testosterone by testosterone 5α -reductase (T- 5α -reductase). Therefore, a T- 5α -reductase inhibitor has been anticipated for use as antiprostate cancer drug. 1) Teststerone 5α -reductase inhibitory activities

Compound	IC ₅₀ (M)
LL-Z 1272 β LL-Z 1272 δ LL-Z 1272 ϵ LL-Z 1272 ϵ LL-Z 1272 γ (ascochlorin) LL-Z 1272 ζ 8',9'-Dehydroascochlorin Riboflavin	$3.6 \times 10^{-4} 3.7 \times 10^{-4} 3.7 \times 10^{-4} 3.4 \times 10^{-4} 3.4 \times 10^{-4} 1.4 \times 10^{-3} 1.3 \times 10^{-3} $

2) These compounds showed no antimicrobial activities against Gram-positive and -negative bacteria, fungi or yeast at a concentration of 500 μ g/ml.

4. Reference

1. [539] S. Takamatsu et al., Chem. Pharm. Bull. 42, 953-956 (1994)