Arohynapene

1. Discovery, producing organism and structures $^{1\mbox{-}3\mbox{-}3\mbox{-}}$

Arohynapenes were isolated from the culture broth of the fungal strain *Penicillium* sp. FO-2295 and identified as anticoccidial agents. Compound C was previously reported as a new metabolite from a hybrid strain derived from *Penicillium citreo-viride* by Lai *et al.*³⁾

Penicillium sp. FO-2295 Bar: 5 μm

2. Physical data

Yellow powder. C₁₈H₂₂O₃; mol wt 286.16. Sol. in MeOH, CHCl₃, EtOH, EtOAc. Insol. in H₂O.

3. Biological activity^{1,2)}

Anticoccidial activity was evaluated by an *in vitro* assay using BHK-21 cells as a host and monensin-resistant *Eimeria tenella* as a parasitic protozoan.

Compound	Minimum effective concentration (μM)		Specifidity (C/Λ)
	Anticoccidial activity (A)*	Cytotoxicity (C)**	specificity (C/A)
Arohynapene A Arohynapene B Compound C Arohynapene D	35 7.0 67 0.51	140 140 190 1.0	4.0 20 3.0 2.0

* No mature shizonts were observed in cells at the indicated drug concentration or higher. ** No BHK-21 cells were observed at the indicated drug concentration or higher.

4. References

- 1. [532] R. Masuma et al., J. Antibiot. 47, 46-53 (1994)
- 2. [565] N. Tabata et al., J. Antibiot. 48, 83-84 (1995)
- 3. S. Lai et al., Chem Lett. 589-592 (1990)