

Aogacillin

1. Discovery, producing organism and structure 1,2)

Aogacillins A and B were discovered in a culture broth of a fungal strain, *Simplicillium cylindrosprum* FKI-5985, and found to be circumventors of arbekacin resistance in MRSA. They have novel skeletons, consisting of a β -keto- γ -methyliden- δ -lactone ring connected to a 2-ethyl-6-methylcyclohexane ring by spiro conjugation.

Simplicillium cylindrosporum FKI-5985

2. Physical data (Aogacillin A)

Yellow syrup. C₁₅H₂₂O₄; mol wt 266.33. Sol. in MeOH, CHCl₃, Insol. in EtOAc, CH₃CN.

3. Biological activity¹⁾

1) Circumvention activity of arbekacin resistance in MRSA

Aogacllins A and B only showed an effect on arbekacin-resistant MRSA in the agar diffusion method when the media contained arbekacin. Of the two, aogacillin A displayed potent circumvention activity even at $0.03~\mu g/disc$.

	Amount	Inhibition zone (mm)	
Compound	μ g/disc	Arbekacin (-)	Arbekacin (+)
Aogacillin A	0.03	_	10.2
Aogacillin B	0.1	_	11.6

2) Aogacillins A and B markedly reduced the MIC value of arbekacin against the MRSA, from 256 μ g/ml to 8 μ g/ml (32-fold).

4. References

- 1. [1158] K. Takata et al., Org. Lett. 15, 4678-4681 (2013)
- 2. [] K. Nonaka et al., Mycoscience **54**, 42-53 (2013)